Reconstructing 9.4T MRI from 7T MRI images using Generative Adversarial
Networks

Sadhana Ravikumar

sadhanar@seas.upenn.edu

Xuchen Wang

xuchenw@seas.upenn.edu

Wendy Feng

wendyfyx@seas.upenn.edu

John Bernabei

johnbel@seas.upenn.edu

Abstract

High-field MRI offers superior resolution and contrast
compared to lower field strength MRI. However, high-field
MRI is not as easily available and more costly. Therefore,
a computational method for increasing resolution and con-
trast in medical imaging would be of significant medical
and scientific importance. Here, we show that a generative
adversarial network can be trained to transform 7T images
to look more like 9.4T images by improving the contrast and
resolution of the original images. We also show that this
method performs superior to a fully convolutional network
without a paired discriminator as well as a non-deep learn-
ing random forest model.

1. Introduction

High-field MRI scans provide higher resolution and bet-
ter tissue contrast compared to lower field strength scans.
With better resolution and tissue contrast, fine anatomical
features can be seen more clearly, and post-processing tasks
such as tissue segmentation and quantitative image analysis
can be done more accurately. Unfortunately, high field MRI
scans are more expensive, and not as easily available.

Previous work related to this topic of image-to-image
translation has been done to reconstruct 7T MRI from 3T
MRIL. In this work, our goal is to develop and evaluate deep
learning solutions to synthesize high field strength scans ac-
quired at 9.4T from low field strength scans acquired at 7T.
We will use a dataset of post mortem MRI scans of hu-
man brain specimens that have been scanned at both field
strengths with an extremely high-resolution. Image syn-
thesis of 9.4T MRI from 7T MRI scans would allow us
to obtain better quality and higher-resolution images, while
avoiding the additional costs and limitations associated with
acquiring real 9.4T MRI images.

2. Related Work

Image-to-image translation is a very challenging prob-
lem since the mapping from source image to target image
is non-linear and high-dimensional. Recently, several re-
searchers have focused on addressing the challenge of esti-
mating one modality image from another [13, 2] and sin-
gle image super-resolution (SSIR) of MRI scans [16, 3].
Learning-based methods such as non-linear regression us-
ing random forest has been explored to perform image syn-
thesis [7]. This approach relies on extracting a set of fea-
tures from the source image dataset and then non-linearly
mapping these features to generate the target image. The
performance of this method is heavily dependent on the
quality of the extracted source features.

Recently, deep learning has gained popularity in medical
image analysis, and achieved great success in image super-
resolution and synthesis without the need for hand-crafted
features. Super resolution is the process of upscaling and or
improving the details within an image. Dong et al. [4] pro-
pose using a convolutional neural network (CNN) for SISR.
Given an input low resolution image, an end-to-end network
is trained to learn the non-linear mapping to output the cor-
responding high resolution image. Kim et al. propose using
a deeply recursive CNN to boost network performance and
show that deeper networks achieve better super-resolution
[©]. In [2], Bahrami et al. adopted a CNN to generate 7T
MRI images from 3T MRI images by feeding the CNN with
both the MRI intensity image as well as the correspond-
ing anatomical segmentation. While using both appearance
and anatomical features ensures anatomical consistency, the
disadvantage of this method is the reliance on manually la-
belled anatomical segmentations. Labelled images are time-
consuming to generate and not easily available for large
datasets. When training CNNs, typically the mean square
error (MSE) between the reconstructed and target image is
used as the loss function. CNNs have been shown to be able
to recover the structural details of high resolution images.
However, the synthetic images generated using a CNN are

often blurry due to a lack of spatial context from neighbor-
ing voxels.

More recently, conditional generative adversarial net-
works (GANSs) have been proposed for addressing this prob-
lem. In addition to training a convolutional generator net-
work using adversarial learning, these networks simultane-
ously train a discriminator network which drives the genera-
tor’s output to appear more similar to the ground-truth target
image perceptually. In [13], a supervised GAN is trained to
learn the mapping from 3T MRI to 7T MRI. By adopting an
adversarial approach, they addressed the problem of blurry
target images. In this work, Nie et al. propose including
an additional image gradient difference loss in addition to
the reconstruction loss and generator loss, to minimize the
difference of the gradients between ground truth and syn-
thetic images. The intuition behind this loss is to keep the
strong gradients in the synthetic images with more promi-
nent edges. They also adopt a residual learning framework
to facilitate training the network. The Pix2Pix conditional
GAN [06] is another popularly used approach for training a
convolutional network for image-to-image translation tasks.
It has been applied to a wide range of image translation
tasks, such as converting maps to satellite photographs and
converting black and white photographs to color.

3. Hypothesis

While CNNs can been used to generate synthetic 9.4T
MRI from 7T MRI using a reconstruction loss, we hypoth-
esize that incorporating a discriminator network on top of
a CNN model will help the network generate better quality
synthetic 9.4T images. The discriminator loss takes into ac-
count the network’s ability to distinguish real and synthetic
9.4T images. This adversarial learning will provide the gen-
erator more information regarding subtle anatomic details
in the 9.4T scans that can be used during the reconstruction
process to fool the discriminator.

4. Inductive Biases

In this project, we will be using paired 7T and 9.4T MRI
scans to train the different networks. Therefore, we know
that the anatomical brain structure (context features) is the
same across each pair of training images. We can therefore
focus on training the network to learn the residual differ-
ence between the two images, which would be the high res-
olution details and contrast differences. We also know that
there is a strong intensity gradient along the boundaries of
anatomical structures that can be used to guide the recon-
struction process. We believe that by incorporating a gra-
dient loss function in the generator, this contrast could help
inform detailed edges within the image.

5. MRI Dataset

The dataset consists of 3D post mortem scans of the me-
dial temporal lobe region of the brain from 44 specimens
acquired at both 7T and 9.4T. The 9.4T scans were acquired
with a resolution of 0.2 x 0.2 x 0.2 mm?, and the 7T scans
were acquired with a resolution of 0.4 x 0.4 x 0.4 mm?>. It
is important to note post mortem scanning of the brain al-
lows for a much higher resolution in general, compared to
standard clinical in vivo MRI scans which are typically ac-
quired with a resolution of 1 mm?. In this work, we will be
performing image synthesis using 2D image slices which
can be obtained by simply slicing each 3D dataset along
multiple axes.

5.1. Data Pre-processing

As part of the image pre-processing, both the 7T and
9.4T scans were corrected for bias field non-uniformity us-
ing the N4ITK algorithm [15] and normalized to a common
intensity range by clipping the intensities below the 0.1 and
above the 99.9 percentile and scaling the intensity range to
[0,1000]. Following image acquisition, the images are not
aligned with each other across both field strengths. To align
matching specimens, the 7T scans were first up-sampled (by
a factor of 2) to have same dimensions as the higher reso-
lution, 9.4T scans. The two images were then co-registered
using a combination of affine and deformable image reg-
istration. Figure | shows 2D slices of paired 7T and 9.4T
scans, following image registration. It an be noticed that
the 9.4T scans have a higher resolution, better contrast and
sharper edges.

Figure 1: Example 2D slice of a post mortem MRI scan
showing the 7T scan (left) and paired 9.4T scan (right)

5.2. Generating Patches

Due to the large and variable size of the input images,
the networks were trained on image patches. As a first
step, the dataset was split into training, validation and test-
ing datasets using a 70/20/10 split. Each image was first

normalized to the range [0,1] and standardized to have zero
mean and unit variance. To generate patches for training,
in each specimen 300 corresponding patches of size 64x64
were randomly sampled across the paired image volumes.
This resulted in a total of 9300 pairs of image patches to
train the network, sampled from 31 different specimens.
To generate patches testing and validation, the images were
densely sampled, using a spacing of 20 voxels. At test time,
the generated patches are stitched back together. Overlap-
ping regions are averaged to obtain the final image. Patches
of size 32x32 were also generated to assess how patch size
affects network performance. Example input image patches
are shown in Figure 2. From image pair shown in Figure
2-4, it can be noted that the 7T images may sometimes con-
tain image noise that is not present at 9.4T. Furthermore,
from the darkened 9.4T scan in Figure 2-5 we can see that
MRI scans are prone to intensity inhomogeneities and other
artifacts that are not necessarily consistent across both pro-
tocols. These issues make the problem of image reconstruc-

tion more challenging.

fﬂﬂg@ ‘
=7

Figure 2: Example 2D 64x64 patches of 7T (bottom) and
9.4T (top) image pairs used to train the networks.

6. Method
6.1. Random Forest Super-resolution (RFSR)

As a non deep learning baseline, we used the random
forest super resolution (RFSR) algorithm proposed by Sher-
meyer et al. [14]. We adapted the implementation from the
authors to our dataset '. Training data for RFSR was cre-
ated by downgrading the high resolution images and cre-
ating low resolution (LR) and high resolution (HR) image
pairs. The LR images are shifted by a dimension of 2 in
all directions, and each shifted images are stacked together
then padded with zeros. RFSR trains on residual images -
subtracting the actual LR images from this stacked LR im-
ages to create inputs to the Random Forest model, and from
the HR images to create the targets. Subtracting the LR im-
ages removes the homogeneous areas, so that the model can
focus more on the difference between LR and HR images.

lhttps://qithub.com/jshermeyer/RFSR

The scikit-learn Random Forest regressor was used to
train on the residual stacked LR images, and residual HR
images. The number of estimators (number of trees in the
forest) used is 200, each with a maximum depth of 15.

6.2. Convolutional Neural Network (CNN)

While mostly GANs have been used in image recon-
struction problems, we were interested in assessing the ef-
fectiveness of a fully convolutional network (FCN) when
performing this task to provide a deep learning baseline. In
our initial experiments, a convolutional network, similar to
the model proposed by Bahrami et al. [2], was used (FCN
1). This network represents the most basic form of a con-
volutional network and consists of 4 convolutional layers,
each of which followed by batch normalization and a recti-
fied linear unit (ReLLU). Since this model preserves the input
image size across all the network layers, we experimented
with a second FCN architecture (FCN 2), which instead first
down-samples and then up-samples the input image. Un-
like the U-Net architecture, this network does not contain
cross-connections between the encoder and decoder. Max-
pool layers were used to down-sample the images in the en-
coder, and transposed convolutions were used to up-sample
the image back to the input image size.

Lastly, we experimented with densely connected con-
volutional networks. Specifically, the densely-connected
super-resolution network (DCSRN) described in [3] was
implemented since it achieved good results when applied to
brain MRI super-resolution. The first layer of this network
is a convolutional later with a kernel size of 3 and 24 filters.
This is followed by a densely connected block wich con-
sists of 4 units. Each unit consists of a batch normalization
layer, an exponential linear unit activation and a convolu-
tional layer, with filter numbers increasing in each unit by
a factor of 24. At the input to each densely connected unit,
the output images from previous filters are concatenated. A
final convolutional layer is used at the end to provide the
final HR output. The network archiectures for the different
CNN architectures explored (FCN 1, FCN 2 and DCSRN)
are shown in Figure 3.

6.3. Generative Adversarial Network (GAN)

The conditional GAN model served as our advanced
deep learning approach, to learn the mapping from the input
images (low resolution images) to the output images (high
resolution images). The generator is trained to generate fake
images which appear as real as possible, while the discrimi-
nator is trained to detect the "fake’ images generated by the
generator. The architectures of the models we found to be
the most representative during our training process, as well
as their hyper-parameters, are summarized in Table 1. The
input, output dimensions as well as kernel size are marked
on the architectures, see Figure 13.

https://github.com/jshermeyer/RFSR

Convolution

1 s
Convolution

[

Maxpool Convolution
Maxpool ~ Convolution & L/
Maxi Conv Transpose - /
Conv Transpose |

pool

(b) FCN 2

(c) DCSRN

Figure 3: CNN Model Architectures

Residual learning was used in the generator network pro-
posed by Nie et al. [13], so we started by implementing
residual learning in the generator. However we found that
by adding the source LR image onto the learnt residual, the
generated HR image appear blurry, contains fuzzy edges
and noisy background from the source LR images. To al-
leviate this effect, we found that directly generating the HR
images from the input LR images generates much better re-
sults.

We first tried a different number of layers in the gener-
ator and the discriminator and found that generators with
layers less than five could not capture enough information
from the low-resolution images and generators with more
than six layers could not improve the performance as much
as we expected, so we decided to use the generator with
five layers as our baseline GAN model, see part (a) in Fig-
ure 13. Based on model 1, we altered the kernel size and
the filter number in the generator, see part (c) in Figure 13,
to create model 2. Intuitively, larger filter numbers would
capture more patterns and larger kernel size corresponds to
a larger receptive field and thus considers more context. In
addition, model 2 has a 1 x 1 convolution layer in the end to
downsample feature maps. With the same idea, we further
developed model 3, which has six convolution layers, larger
kernel sizes, and more feature maps in each layer. The same
changes were also applied to the corresponding discrimina-
tors. Comparing model 1 and model 3, the discriminator in
model 3 has more feature maps to discover more patterns
and has MaxPool layers to reduce the number of parame-
ters. Model 4, builds on top of model 3, where we add a

gradient difference loss to the generator loss function, see
Section 6.4.

In general, the generator in these deep convolutional
GANs (DCGANSs) use 5-6 standard convolution layers
which extract the high-level features from the input image,
and batch normalization layers which normalize the output
images. We further experimented with a more complex gen-
erator: the U-net generator from pix2pix, proposed by Isola
et al. [6]. U-net is an encoder-decoder system with skip
connections. The purpose of the encoder-decoder system
is to extract a high-level compact representation of the in-
put images although the image may lose pixel-wise infor-
mation during the compression. As described in [6], since
the output image of the generator has the same under-laying
structure, to circumvent the bottleneck structure and reserve
the information from the input, we add skip connections to
concatenate the layers before the bottleneck with the layers
after the bottleneck. The detailed U-net architecture can be
found in part (g) in Figure 13. We replaced our original DC-
GAN generator with the U-net generator while keeping the
same DCGAN discriminator, see part (d) in Figure 13.

Additionally, we created two different sized sharpening

kernels to sharpen the edges of the generated images in
model 6:

1 4 6 4 1

0 -1 0 416 21 16 4

1 5 —1| and —%|6 24 —476 24 6

0 -1 ¢ 256 14 16 24 16 4
1

4 6 4 1

. Both kernels emphasize the pixel at the center of the ker-
nel, while de-emphasizing the pixels near the kernel bound-
aries. Since the sum of the matrix elements is always 1,
the matrix convolution does not change anything in a flat
area but enlarges any intensity differences along edges. The
inputs are convolved with the sharpening kernel after be-
ing passed through the U-net generator. We expect that the
sharpening kernel would reduce the blurriness of the gener-
ated images and sharpen any edges. We also tuned other
hyper-parameters, such as the weighting of the different
loss functions in the generator, and increasing the genera-
tor learning rate. The hyper-parameters can be found in the
second section of the Table 1

Finally, we experimented with the original pix2pix ar-
chitecture, adding a PatchGAN discriminator on top of the
U-net generator. A PatchGAN splits the input image into
several patches, runs the traditional convolution models on
each of them, and averages the final results to determine
whether the image is real or fake. The main difference be-
tween a PatchGAN and a regular discriminator is that the
output of a regular discriminator is a binary indicator, 0 or
1, while the output of the PatchGAN is a convolution layer,
each element of which corresponds to each small patch. The
main reason for us to use PatchGAN, as stated in the pix2pix
paper [0], is that the PatchGAN can alleviate the problem
of blurry images by forcing the discriminator to only model
high frequencies, like edges and details. The detailed hyper-
parameters for the pix2pix model can be found in the last
section of the Table 1.

6.4. Loss Functions

When training the GANS, the standard conditional GAN
loss is used in all the models, computed using binary cross
entropy loss, shown in Equation 1 and 2. Here X,..q; refers
to the original HR images, and X 7. refers to the generated
HR images.

n

Lp = —S (Lpop(D(Xrea), 1
D 2n;(BeE(D(Xrear), 1) "
+Lpor(D(Xfake),0))
1 n
Leper = > Lpon(D(Xjake), 1) 2)
=1

In addition, we experimented with three other types of
losses for the generator - a reconstruction loss, a gradient
different loss, and a perceptual loss.

Reconstruction loss, see Equation 3, takes in the original
HR and generated HR and compute the L1 or L2 loss be-
tween the two. We experimented with both L1 and L2 loss
and found that L1 loss produces less blurry picture than L2
loss with better edges and borders. L1 loss performs better
on image generation tasks than L2 loss, most likely because

L1 loss is less likely to be stuck in local minima, according
to previous work by Zhao et al. [18]. The pix2pix paper
[6] claims that L1 loss forces low frequency correctness,
meaning that it ensures that the larger structures of the im-
ages remain unchanged, so that the discriminator and other
losses (such as gradient difference loss) can focus on ensur-
ing higher frequency correctness, i.e. the area around the
edges.

k={12} Q)

We also use the gradient difference loss proposed by
[13], see Equation 4. The implementation can be found in
their Github repository 2. This loss minimizes the difference
between the gradient magnitude along each dimension of
the input. The gradient is computed by convolving the orig-
inal HR and generated HR images with 2 kernels [[—1, 1]]
and [[1], [-1]], of size 1 and 2 x 1 respectively. Then the
loss is computed by summing squared difference between
the two gradients.

LGRecon = HXreal - Xfake”k

Leon, = HVXreang - |VXfak:eI||2

4)
+ HVXTealy| - |vaak:ey||2

Lg :AlLGBCE + >\2LGRccon

)
+/\3LGGDL + >\4LGPerceptuul

Perceptual loss, proposed by Johnson et al. [8] has been
used in style transform and super resolution application. To
compute the perceptual loss, input pairs of real and fake
images are passed through a pre-trained convolutional neu-
ral network. The high level representation of image features
obtained from this network is then used to compute the loss.
In our implementation, we first normalize both the original
HR and generated HR images to zero mean and unit vari-
ance, pass them through a pretrained VGG16 network and
extract feature maps from layer 4, 9, 16, and 23. We then
compute L1 loss for outputs from each of the layers respec-
tively and sum them together to get the final perceptual loss.

The final generator loss combines BCE loss, reconstruc-
tion loss, gradient different loss and perceptual loss. Values
for \; through \4 are hyperparameters, and the final tuned
value can be found in Table 1.

6.5. Training

All of the networks were implemented in Pytorch and
run using the GPUs provided on Google Colab. For both
the CNNs and GANs, the Adam optimizer was used to min-
imize the loss between the network output HR images and
the corresponding HR ground truth during training. For the
convolutional networks, a batch size of 32 was used dur-
ing training, with a learning rate of le=3. The training

2https://qithub.com/qinobilinie/medSynthesis\/l

https://github.com/ginobilinie/medSynthesisV1

Model Architecture Generator Loss (weight) Learning rate
i i P tual
Name 4 Gen Disc l(%)\CI;: Reconstruction (A2) Gr(e;h;tnt erc:p ua en Disc
! LI L2 ’ ()

1 (a) (b) 1 1.5 / 1.5 / Se-5 2e-5

2 (c) (d) 1 1.5 / / / 2e-4 2e-5

DCGAN 3 (e) ® 1 1.5 / / / 2e-4 2e-5
4 (e) () 1 1.5 / 1.5 / 2e-4 2e-5

5 (2 (d) 1 1.5 / 2 / 2e-3 2e-4

6 (@" (d) 1 1.5 / 2 / 2e-3 2e-4

U-net Gen @ (@ 1 2 / / / 2e-3 2e-4
8 (2) (d) 1 1.5 / 2 / 2e-3 le-3

9 (2) (h) 1 1.5 / / / Se-5 2e-5

pix2pix 10 (2) (h) 1 / 1.5 / / Se-5 2e-5
11 (2 (h) 1 1.5 / / 1 Se-5 2e-5

* Input images are convolved with a sharpening kernel after being passed through the generator network.

Table 1: GAN Hyperparameters

loss converged after 10 epochs. For longer training periods,
the validation loss began to increase, suggesting network
over-fitting. The reported networks represent the final tuned
hyper-parameters after experimenting with larger/smaller
learning rates and various filter sizes. We also experimented
with using input images with a smaller patch size of 32x32.
However, we found that this reduced network performance.
When training the GAN, the various hyperparameters and
loss functions experimented with are shown in 1. These
networks were trained with a batch size of 32 and for 30
epochs.

7. Analysis

For our analysis, we first evaluated the results by look-
ing at the generated HR images quality during training. If
the results were satisfactory, we applied the trained models
to generate HR images for the test set, stitch up the gen-
erated HR patches and computed Peak signal-to-noise ratio
(PSNR), mean squared error (MSE) and Structural Similar-
ity Index (SSIM), between the generated HR and original
HR on the fully assembled image. Given a pair of m x n
images of original HR, denoted X, and the generated HR,
denoted Y, the evaluation metrics are computed as below:

MSE = — 3 3 (X() - Y@ ©)

255
VMSE

(2uxpy +c1)(20xy + c2)
(hx?+py?+)+ (ox® +oy?+c)

PSNR = 20 x log, o) 7

SSIM =

®)

where px is the mean of image X, o 2 is the variance
of image X and oxy is the covariance, and c¢; and co are
constants.

When evaluating the generated HR images, we check for
clear smooth edges, intensity among non-edge areas and
correctness compared to the actual LR and HR images (i.e.
is there new information in the generated HR that is not
found in the original LR and HR images?). In the assem-
bled, stitched together images, it is also important to check
for edge effect on the edges of the patches, consistency
of image intensity (including background) among multiple
patches in the same stitched image.

7.1. Random Forest Super-resolution (RFSR) Anal-
ysis

The random forest model serves as our non deep learn-
ing baseline. It took almost 2 hours for the random forest
to train on 2000 out of the 9300 training patches, so we
decided not to train on the full training set. After visual-
izing the training and test result, the random forest gener-
ated HR images are almost indistinguishable from the orig-
inal LR images, except slightly matching the intensity of
the LR images to the HR ones. An example from the test
set is shown in Figure 4. Tuning hyperparameters did not
improve the results. RFSR trains on residual images, and
add the trained residual back onto the original LR images to
create the generated HR images. From the residual, we can
see that RFSR is unable to learn the HR features, especially
around the high intensity features around the edges. Given
long training time, the weak residual images, and existing
noise in the LR images, the generated HR images are not

satisfactory by evaluating the image quality. We decided to
move on with deep learning methods.

o7
' /

ki

Original LR

RF Residual Generated HR ~ Original HR

Figure 4: RFSR Example Test Output

7.2. Convolutional Neural Network (CNN) Analysis

Table 2 presents the evaluation results for the CNN mod-
els discussed above: FCN 1, FCN 2 and DCSRN. The DC-
SRN model achieves a significantly higher PSNR value,
a higher SSIM value and lower MSE value compared to
the other two architectures. Looking at the number of pa-
rameters present in each of the networks, the poor perfor-
mance of FCN 1 and FCN 2 could be due to the large size
of the network over-fitting the training data. The benefit
of the densely connected network is that it results in less
over-fitting of the training data since the number of pa-
rameters is greatly reduced. It also results in much faster
training. By introducing skip connections, the densely con-
nected model reuses features several times across the net-
work. This makes it more difficult to overfit the training
data. These effects can be observed in the training and vali-
dation curves shown in Figure 5 and Figure 6. The training
loss converges much faster for the DCSRN model compared
to FCN 1 and FCN 2. Furthermore, despite all three models
converging to a low loss value, the validation loss for FCN
1 and 2 is much larger (approximately 0.1) and noisier. The
L2 validation loss for DCSRN however converges at a much
smaller value of approximately 0.02.

Given that the DCSRN architecture achieved much bet-
ter results, we experimented with the effect of using dif-
ferent loss functions when training the network. The per-
formance of the network was evaluated on the test dataset
using three different loss functions: L1 loss, L2 loss and
perceptual loss. From the metric reported in Table 2, it can
be noted that the L1 loss improves performance across all
three metrics. When using the L2 reconstruction loss, the
network is dis-proportionally driven to correct large differ-
ences between the generated and ground truth image. Un-
like the L2 loss, the L1 loss will try to match up smaller

variations between the two images. The perceptual loss (P)
was computed by taking the L1 difference between feature
images extracted from a pre-trained VGG network. While
the network performance using perceptual loss was better
compared to using L2 loss, qualitatively, the network out-
put images lacked some of the finer details compared to the
L1 loss output. Figure 7 shows an example output test im-
age, obtained by stitching the patches output by the network
back together. Despite the DCSRN model’s improved met-
rics, the resulting image has a dark appearance, and strug-
gles to learn all the details in the input LR image. Fur-
thermore, the CNN output is sensitive to edge artifacts at
the boundaries of the different patches. When stitching the
patches back together, 4 pixels along the boundary of each
patch were cropped out since the receptive field of neural
networks is the strongest surrounding the center of images.
Although the network output was trimmed along the edges,
this artifact suggests that the network performance is poor
near the patch boundaries.

7.3. Generative Adversarial Network (GAN) Anal-
ysis

Table 3 presents the evaluation results for the GAN mod-
els discussed above. It is worth-noting that the results are
relatively consistent for each GAN model. For example,
model 2 has the highest PSNR value, the highest SSIM
value, the lowest MSE value among all the DCGAN mod-
els. Similarly, model 7 and model 9 has the best evaluation
results among all the U-net models and all the pix2pix mod-
els, respectively. The architecture and the hyper-parameters
of each model can be referred to the Table 1.

7.3.1 DCGAN Analysis

As stated above, based on the evaluation table, we found
that the images generated by the model 2 are closer to
the ground truth (high-resolution images) than those by the
other three DCGAN models. Model 2’s generator is made
up of five layers and has 196 filters at maximum. The
standard binary cross entropy loss and the L1 reconstruc-
tion loss are the only loss it uses. It’s stitched patches
can be found in Figure 8. The right-most blue-red col-
ored images indicate the differences between the gener-
ated images and the low-resolution images, where blue ar-
eas indicate positive values (generated have higher intensity
than low-resolution images), and red areas indicate nega-
tive values. The deep blue area in (a) and (b) subfigure 8
shows that the generator of the DCGAN model correctly
detects the brain structure from the input images and en-
hance the corresponding pixel intensity while generating the
high-resolution images (otherwise, the background should
should be deep blue as well). Moreover, the red only ap-
pears at the corner or around the edge in the difference im-

CNN Model PSNR 1 MSE | SSIM 1 # Parameters
FCN 1 57.01 0.147 0.116 308545
FCN 2 56.47 0.151 0.0679 155681
L1 65.51 0.0236 0.358 53977
DCSRN L2 62.83 0.0406 0.254 53977
P 64.1 0.0316 0.211 53977

Table 2: CNN Models Evaluation Results

N

Training Loss

Validation loss

Validation PSNR

Figure 5: Training and Validation curves for DCSRN model, trained using L1 loss (light blue), Perceptual loss (pink) and L2

loss (red).

ages, which means the generator sharpen the images by re-
ducing the intensity at the fuzzy edges. Overall, since the
images are stitched up from several small generated images,
the lack of apparent stitching edges and inconsistent color
means the generator performs consistently and is robust to
various input images.

We believe there are two reasons that result in the model
2 surpassing the other DCGAN models: its generator’s ar-
chitecture and its loss function. The model 2’s generator
has more filters than the model 1’s generator so that it could
capture more patterns from the low-resolution images, but
not as complicated as the model 3 and model 4’s generator,
which may be over-fitting with too many parameters. The
loss function of model 2, and model 3 as well, is a com-
bination of the standard binary cross entropy loss and the
L1 reconstruction loss, whereas the loss function of model
1 and model 4 includes an additional gradient loss. The
resulting generated images may not be very distinct when
we look at single images, but when we stitch small images
together to get large patches, patches generated by models
with gradient loss has stitching edges on the background
that is very hard to ignore. Figure 9 displays the difference
images for all four DCGAN models. The two patches on
the left are generated by the two models without the gradi-
ent loss, while the two patches on the right are generated by
the models with gradient loss.

‘f <\ A "“ r tﬁim

e nY’

a Q ~
oy)

: 1 bf\ g
el 2 2

(a) Model 2 (b) Model 3 (c) Model 1 (d) Model 4

(DCGAN) (DCGAN) (DCGAN) (DCGAN)
Difference Difference Difference Difference
Image Image Image Image

Figure 9: Difference Images for the Four DCGAN Models

7.3.2 U-net Gen Analysis

All the U-net models have the same generator and discrim-
inator architecture, and thus the same parameter numbers.
The original generator from the DCGAN models were re-
placed by the U-net generator with skip connections that
concatenate filter maps before the bottleneck with the filter
maps after the bottleneck. DCGAN 2 Discriminator served
as the discriminator of the new models as well based on our

A

Training Loss

Validation loss

Validation PSNR

Figure 6: Training and Validation curves for FCN models, trained using L2 loss.

Figure 7: Evaluation Images of the DCSRN L1 Model. From left to right: original low-resolution image, generated high-
resolution image, original high-resolution image, and the difference between the generated image and the original low-
resolution image, which indicates the degree the model has learned from the training

experiments on the DCGAN. According to the final eval-
uation results (Table 3), model 7 performs the best among
all the U-net models, which means the generated images
of model 7 is more similar to the high-resolution images.
Despite the same architecture, the main distinction between
the model 7 and all the other U-net models is its loss func-
tion: it only included the binary cross entropy loss and the
L1 reconstruction loss, while the others add an extra gradi-
ent loss. Besides, we did not apply a sharpening kernel (like
model 6) to model 7. Just as the model 2, the blue ares in the
difference image shows in Figure 12 show that the generator
distinguished the object from the background and made an
effort to accentuate the brain structures while generating the
images. The red areas show the U-net generator was trying
to getting closer to the high-resolution images by decreasing
the vagueness from the low-resolution images. Something
notable is that there are many light colored transition area
between the blue areas and the red areas. This phenomenon
reflects that the generator was not confident about the edges,
so it did not change the pixel intensity for those places from
the low-resolution images. In addition, there are stitching
edges over the object (but not over the background) in the
difference images, which may indicate that the U-net gener-
ator finds it difficult to deal with the borders of the images.

The main reason that model 7 performs better than the
other three U-net models is that it did not use the gradient
loss. Just as what happened to the DCGAN models, stitch-
ing edges also appear on the background of the images of
the models that used gradient loss. As shown in the Figure
10, all the three difference images on the right has stitching
edges on the background. An notable difference here is be-
tween model 5 (b) and model 6 (c). Compared to model 5,
model 6 only had one more convolution operation: it con-
voluted the output images with a sharpening kernel. As the
result, the stitching edges on the background caused by the
gradient loss reduce significantly. This may indicate that
the sharpening kernel forced the gradient loss to pay more
attention to the borders and thus alleviate the problem of
apparent stitching edges.

7.3.3 Pix2pix Analysis

Overall, the pix2pix models performed more poorly than
DCGAN and U-net models. One of the most significant
weakness of pix2pix models is the inconsistency of the
background. We experimented with the same architecture
of a U-net generator and PatchGAN discriminator, part (g)-
(h) in Figure 13, but different generator loss function. We

GAN Model PSNR 1 MSE | SSIM 1 # Parameters

1 65.31 0.022 0.255 6885
2 67.44 0.0178 0.578 458385
DCGAN 3 67.06 0.0194 0.588 868369
4 65.67 0.0225 0.358 868369
5 65.90 0.0229 0.500 1829025
U-net Gen 6 66.17 0.0213 0.498 1829025
7 67.55 0.0174 0.593 1829025
8 66.27 0.0223 0.508 1829025
9 65.87 0.0249 0.544 1829025
pix2pix 10 63.18 0.0333 0.237 1829025
11 61.07 0.0517 0.443 1829025

Table 3: GAN Models Evaluation Results

(e) Model 9 (pix2pix) Evaluation Image (f) Model 9 (pix2pix) Evaluation Image

Figure 8: Evaluation Images of GAN models. From left to right: original low-resolution image, generated high-resolution
image, original high-resolution image, and the difference between the generated image and the original low-resolution image,
which indicates the degree the generator has learned from the training

found that using gradient difference loss yielded especially away with training, So we decided to only experiment with
poor results during training, where the generated HR im- BCE, reconstruction loss and perceptual loss.

displayed a st id-like structure that d t
ages displayed 4 strong gric-like structute That coesnt g6 The difference between the generated HR and the LR

e

T f‘_"\-L
1 "
N7

5:.‘ X

(a) Model 7 (U- (b) Model 5 (U- (c) Model 6 (U- (d) Model 8 (U-
net) Difference net) Difference net) Difference net) Difference
Image Image Image Image

Figure 10: Difference Images for the Four U-net Models

images is shown in Figure 11. Model 9 uses the L1 re-
construction loss, model 10 uses the L2 reconstruction loss
and model 11 uses the L1 reconstruction loss along with the
perceptual loss. At a glance, model 11 performs very poorly
when perceptual loss is added, where the generator starts to
produces artifacts on the lower left corner for background
patches where there’s no active brain regions. Those ar-
eas with the brain regions in the generated HR images have
lower intensity than the original LR images, showing that
the perceptual loss fails to generate higher resolution im-
ages.

Comparing the L1 and L2 loss, L1 reconstruction loss
has shown to perform better in DCGAN and U-net train-
ing, and is the same cases here for Pix2pix models. L1 re-
construction loss is able to enhance the active brain region
compared to the background, which is our desired result,
whereas L2 reconstruction loss enhances the background
patches, but reduces the intensity of the active brain regions,
see part (a)-(b) in Figure 11. Comparing model 9 and model
10 shows that L1 reconstruction loss allows the generator to
generate better images.

7.3.4 GAN model Analysis

We now want to compare the best models from the DC-
GAN, U-net, and pix2pix: model 2 (DCGAN), model 7 (U-
net), and model 9 (pix2pix). The stitched together patches
from these three models can be found in Figure 8. The eval-
uation result shows that the performance of model 2 and
model 7 are about the same, while model 9 performs worse
than them. The stitching patches 8 and the loss curve 12
show the same thing. We can recognize integrated brain
structures in the stitching patches of model 2 and model 7
because they all have clear edges and consistent color, but

e B b
]
1 A g
w
> E &
2, \
L - | . |
% !.J
] "
|] |]
&
E B E
o B A e
B B k B
A A
E B b B

(a) Model 9 (U- (b) Model 10 (U- (c) Model 11 (U-
net) Difference net) Difference net) Difference
Image Image Image

Figure 11: Difference Images for the Three Pix2pix Models
Models

we can only make a guess when looking at the stitching
patches of model 9 because the small images are so differ-
ent from each other, which shatters the feeling of a whole.
Since all the three models only used the binary cross en-
tropy loss and the L1 reconstruction loss, we can compare
their training loss curves directly. Although all the three
discriminator losses converge at around 0.1, there is a dif-
ference in the generator losses. Model 2’s generator loss
kept going up and converged around 1.6; model 7’s gener-
ator loss went up first and decrease shortly, but eventually,
it also converged around 1.6; like model 2’s generator loss,
model 9’ generator loss also kept rising, but it converged
around 3.2 at the end, which is much larger than 1.6.

We believe the main reason the pix2pix model performed
worse than the other two models is the PatchGAN discrim-
inator. As been described above in the Method section,
PatchGAN mainly focus on distinguishing small patches in-
stead of the whole image and its final decision is an average
of the small patches. However, small patches can only pro-
vide local information. As the result, the discriminator tend
to false-fully classify fake images as real or real images
as fake. This in turn influence the training of the genera-
tor. Figure 12 shows that as the discriminator loss decrease,
the generator loss keeps increase. As the discriminator loss
reached 0.1, the generator loss also reached 3.2. Finally, in
Figure 11, the evaluation difference images, we can see that
there are blue area in the background area and red area in
the object area, which means the generator was emphasiz-
ing the background or ignoring the object.

7.4. Model Comparison

Comparing the results of the three approaches: RFSR,
CNNs and GANs, we found that that the GAN models out-

1.6

0.8

0.4 +

0 1k 2k 3k 4k bk 6k 7k 8k

(a) Model 2 Generator Loss Curve

0 1k 2k 3k 4k bk 6k 7k 8k 9k

(c) Model 7 Generator Loss Curve

o K 2 3k K [[7k ES

(e) Model 9 Generator Loss Curve

0.3

0.1

0 1k 2k 3k 4k 5k 6k Tk 8k

(b) Model 2 Discriminator Loss Curve

0.15

0.13

0.09

0O 1k 2k Bk 4k bk ek 7k 8k 9k

(d) Model 7 Discriminator Loss Curve

. o o o o
SO SO N

NN

0.18

0.16

014

012

2k 3k 4k Sk 3 7k ke

(f) Model 9 Discriminator Loss Curve

Figure 12: Training Loss Curve for GAN model 1

perform the CNN model, across all three architectures and
RFSR. The RFSR output is not distinguishable from the
LR input image. Therefore, further quantitative analysis
was not done using this apprach. Comparing deep learn-
ing models, we observe that using the L1 loss improved
our network’s performance consistently across all our deep
learning experiments. A limitation of our current baseline
implementation is that the network architecture used for the
GAN generator is not consistent with any of our CNN ar-
chitectures, thereby making it difficult to directly infer the
benefit of incorporating the discriminator network.

With this caveat in mind, from Tables 2 and 3, it can
be noted that the DCSRN model, with L1 loss achieved
only a slightly lower PSNR compared to the GAN models.
Despite this minor difference in PSNR, the GAN models
consistently have much higher SSIM metrics. Minimizing
the reconstruction loss between two images is equivalent
to maximizing PSNR [13]. As mentioned by Ledig et al.
[11], a higher PSNR does not necessarily provide a percep-
tually better result. This is clearly observed when looking
at our example output test images shown in Figures 7 and
8. Despite the PSNR values for DCSRN with L1 loss and

the best performing GANS being similar, qualitatively, the
evaluation images generated by the GAN are significantly
better. Unlike the GAN outputs, the CNN output has a
much darker appearance, suggesting that the network isn’t
able to easily distinguish the background and foreground in
the image. Given that the best performing networks were all
trained using only an L1 loss, this suggests that the improve-
ment obtained by using a GAN is due to the difference in
network architecture. We believe that this improvement is
likely due to the presence of a discriminator network in the
GAN, which drives the generator to output images which
are perceptually similar to the ground truth HR images to
fool the discriminator.

8. Conclusion & Discussion

For our project, we attempted to generate high-
resolution, 9.4T MRI images from lower resolution, 7T
MRI images. We evaluated the performance of our GANS
against baseline models, namely random forest super-
resolution and convolutional neural networks. We also
tried several novel approaches to improve the model perfor-
mance, such as perceptual loss, PatchGAN discriminator,
and sharpen kernel. Comparing our results, we found that
in general, the GAN models perform better than the for-
mer two on this task. In particular, the DCGAN and GAN
with U-net generator achieved the best metrics during our
quantitative evaluation. Their stitching patches of the gen-
erated images shows that the generators of DCGAN and the
U-net generator can distinguish the object from the back-
ground, render the brain structures consistently, and reduce
the vagueness from the low-resolution images.

There are many directions for future work. First of all,
the gradient loss did not work well for the borders of the
images. This disadvantage got even worse when we tried
to stitch together the patches. The borders formed apparent
stitching edges which hugely influenced the evaluation of
the models. However, during the evaluation of model 6, we
notice that introducing the sharpening kernel may have alle-
viated the problem of stitching edges. We would like to test
the relationship between the gradient loss and the sharpen-
ing kernel in the future and would also like to experiment
with other methods to ameliorate the gradient loss.

In addition to improving the gradient loss, other loss
functions used to supervise adversarial learning can also be
modified. The instability of GANs during training is well-
known, and convergence is not always guaranteed during
training. A previous study showed that KL divergence and
cross entropy loss are not suitable for training GANS, and
proposed using an approximation to the Wasserstein dis-
tance [1]. This is another network modification that can be
explored in future work.

In this work, we have performed reconstruction on 2D
slices, by working slice by slice through a 3D volume, to

provide proof-of-concept. This approach does not take ad-
vantage of continuous structures in 3D and doesn’t have as
much spatial context regarding the various anatomical struc-
tures. In future work, a 3D GAN can be explored. A 3D
network will likely perform better since it can directly ex-
tract 3D image features, and consider information across
multiple slices.

Finally, our model currently can only enhances the fea-
tures already in the low-resolution images. This makes the
generated images highly depend on the input. If the input
image itself does not contain certain features, then the gen-
erated image cannot learn the artifacts in the high-resolution
images itself. With that in mind, the performance of our
GAN could also be further improved by exploring differ-
ent network architectures and adversarial training schemes.
Various generator network architectures have been explored
for super-resolution tasks, such as residual networks [17, 5],
recursive structures [10, 12] and densely connected net-
works [3]. Therefore, searching for better model architec-
tures would be a focus of future work.

References

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017.
13

[2] Khosro Bahrami, Feng Shi, Islem Rekik, and Dinggang
Shen. Convolutional neural network for reconstruction of
7t-like images from 3t mri using appearance and anatomical
features. In Deep Learning and Data Labeling for Medical
Applications, pages 39-47. Springer, 2016. 1, 3

[3] Yuhua Chen, Yibin Xie, Zhengwei Zhou, Feng Shi, An-
thony G Christodoulou, and Debiao Li. Brain mri super res-
olution using 3d deep densely connected neural networks.
In 2018 IEEE 15th International Symposium on Biomedical
Imaging (ISBI 2018), pages 739-742. IEEE, 2018. 1, 3, 13

[4] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Learning a deep convolutional network for image
super-resolution. In European conference on computer vi-
sion, pages 184-199. Springer, 2014. 1

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016. 13

[6] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
Efros. Image-to-image translation with conditional adver-
sarial networks. CoRR, abs/1611.07004, 2016. 2,4, 5

[71 Amod Jog, Aaron Carass, and Jerry L Prince. Improving
magnetic resonance resolution with supervised learning. In
2014 IEEE 1l1th International Symposium on Biomedical
Imaging (ISBI), pages 987-990. IEEE, 2014. 1

[8] Justin Johnson, Alexandre Alahi, and Fei-Fei Li. Percep-
tual losses for real-time style transfer and super-resolution.
CoRR, abs/1603.08155, 2016. 5

[9] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate
image super-resolution using very deep convolutional net-

(10]

(1]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1646-1654, 2016. 1
Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-
recursive convolutional network for image super-resolution.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1637-1645, 2016. 13
Christian Ledig, Lucas Theis, Ferenc Huszér, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. pages 4681-4690, 2017. 12

Zhen Li, Jinglei Yang, Zheng Liu, Xiaomin Yang, Gwang-
gil Jeon, and Wei Wu. Feedback network for image super-
resolution. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 38673876,
2019. 13

Dong Nie, Roger Trullo, Jun Lian, Li Wang, Caroline Pe-
titjean, Su Ruan, Qian Wang, and Dinggang Shen. Med-
ical image synthesis with deep convolutional adversarial
networks. IEEE Transactions on Biomedical Engineering,
65(12):2720-2730, 2018. 1,2,4,5, 12

Jacob Shermeyer and Adam Van Etten. The effects of super-
resolution on object detection performance in satellite im-
agery. CoRR, abs/1812.04098, 2018. 3

Nicholas J Tustison, Brian B Avants, Philip A Cook, Yuanjie
Zheng, Alexander Egan, Paul A Yushkevich, and James C
Gee. N4itk: improved n3 bias correction. IEEE transactions
on medical imaging, 29(6):1310-1320, 2010. 2

Jiancong Wang, Yuhua Chen, Yifan Wu, Jianbo Shi, and
James Gee. Enhanced generative adversarial network for
3d brain mri super-resolution. In The IEEE Winter Confer-
ence on Applications of Computer Vision, pages 3627-3636,
2020. 1

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and
Yun Fu. Residual dense network for image super-resolution.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2472-2481, 2018. 13

Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss
functions for image restoration with neural networks. /IEEE
Transactions on Computational Imaging, 3:47-57, 2017. 5

GAN Architectures

256

(e) DCGAN 3 Generator (f) DCGAN 3 Discriminator

(g) U-net Generator

(h) PatchGAN Discriminator
Figure 13: GAN Model Architectures

