
Food Tracker: Know What You Eat

Yixue (Wendy) Feng, Wendi Kuang, Yuezhan Tao, Xuchen Wang

December 27, 2019

1 Introduction

According to a study conducted by the National Center of Health Statistics at the Center for
Disease Control and Prevention in 2017, approximately 40 % of US adults aged 20 and above were
obese [1]. Since obesity may cause high blood pressure, stroke, heart disease, stress incontinence,
type-2 diabetes, and many other serious diseases [2], it is essential to keep track of daily intakes.
However, despite the availability of numerous food applications, very few can actually give detailed
and comprehensive information on the nutrients for the major foods available on the market.

In order to resolve this problem, we came up with the idea of developing an user interface that
uses a food database to provide detailed nutrition information for popular food on the market.
For this project, we used a set of data provided by the National Agricultural Library to create a
food database and developed a web application that can retrieve the useful food information. This
web application provides three main functionalities. First of all, users can retrieve the nutrition
information of a specific food they eat or wish to eat. Secondly, by entering multiple food that a
user has eaten throughout the day, our application can calculate how much nutrition he/she has
consumed. Moreover, food suggestions can also be made based on users’ needs and goals. We wish,
by providing the detailed nutritional information for the popular foods people usually eat, users
can be aware of what they eat and make diet/work-out plans accordingly.

2 Data Source & Technologies

2.1 Data Description

The data used in this project is downloaded from the official website of Food Data Central, managed
by the Agricultural Research Service and hosted by the National Agricultural Library. It is an
integrated data system that provides nutrient profile data come from a variety of sources. The data
sets can be found at: https://fdc.nal.usda.gov/download-datasets.html.

The food table includes all the foods used in our database. This table is the primary table that links
all the others together. The branded-food tables include a subset of food that have brands. The
food-category table splits the food into 28 different categories, like vegetable and pork products.
The nutrient table and the food-nutrient table indicate the nutrient names and the amount each

1

https://fdc.nal.usda.gov/download-datasets.html.

type of food contains. Lastly, the nutrient-conversion-factor table and the calorie-conversion-factor
table indicate the calorie values of protein, fat, and carbohydrate for each food.

2.2 Data Pre-processing

1. The downloaded data are in 33 CSV files, and each one is a unique table with multiple
attributes. We selected a subset of CSV files and filtered out the attributes are not needed
in our application.

2. We dealt with the missing data by dropping the NA values in the files and preserved the
necessary ones for later calculations.

3. We cleaned the data by changing all the characters to lowercase, connecting strings using
underscores, and adjusting the data type for some attributes with R (e.g., converted all IDs
to type int).

4. For food with null food category id, we created another row in food category table and as-
signed these foods to the category “Unknown.”

5. We pre-processed food descriptions containing useless information like “broccoli, raw, 2
bunches (in1) - nfy0905dd” and removed the meaningless last part.

6. We split descriptions in the food table into two attributes: descMajor and descMinor, to allow
for a broad search using descMajor and narrow search using descMinor.

2.3 Summary statistics

The following are the summary statistics of the table after pre-processing.

Dataset Name File Size Number of Rows Number of Attributes

food.csv 13MB 292060 4

branded food.csv 80.5MB 260365 5

food nutrient.csv 75.4MB 4800957 3

nutrient conversion factor.csv 142KB 10919 2

calorie conversion factor 94KB 4767 4

nutrient 6KB 227 3

food category 765B 29 2

Table 1: All important datasets used in this project

2.4 Data Ingestion

2.4.1 Local MySQL database

The data was first populated into the local database through the terminal using the procedure and
command listed below.

2

1. We created a database called “food tracker” in MySQL database in our local machine

2. We used DDL statements in “data processing/create table.sql” to create tables in our local
machines. The detailed DDL statements can be found in Appendix A.

3. We loaded data into database with statements in “data processing/load data.sql”

LOAD DATA INFILE "file-path"

INTO TABLE food_category

FIELDS TERMINATED BY ‘,’

ENCLOSED BY ‘"’

LINES TERMINATED BY ‘\n’

IGNORE 1 ROWS;

It is worth noting that all tables must be created and loaded in the following order to meet the
foreign key constraints, and all code can be found in Appendix A.

1. Food Category

2. Food

3. Branded Food

4. Nutrient

5. Food Nutrient

6. Food Calorie Conversion Factor

7. Food Nutrient Conversion Factor

2.4.2 AWS MySQL database

The database was migrated to the AWS by dumping the local database out and loading them into
the cloud database. The local dump file was created by the following command:

sudo mysqldump \

--databases food_tracker \

--master-data=2 \

--single-transaction \

--order-by-primary \

-r backup.sql \

-u root \

-p

After this process, we can log into the cloud database and then use the “source backup.sql” com-
mand to load the dump data into the cloud-hosted MySQL database. The database configuration
file was adjusted to connect our application to this cloud-hosted database.

3

2.5 Relational Schema and ER diagram

2.5.1 Relational Schema

The following is the relational schema used in our database:
food(fdc id, descMajor, descMinor, food category id)
–food category id REFERENCES food category(food category id)
branded food(fdc id, brand owner, ingredients, serving size, serving size unit)
– fdc id REFERENCES food(fdc id)
food category(food category id, description)
food nutrient(fdc id,nutrient id, amount)
– fdc id REFERENCES food(fdc id)
– nutrient id REFERENCES nutrient(nutrient id)
nutrient(nutrient id, name, unit name)
food nutrient conversion factor(nutrient conversion id,fdc id)
– fdc id REFERENCES food(fdc id)
– nutrient conversion id REFERENCES food calorie conversion factor(nutrient conversion id)
food calorie conversion factor(nutrient conversion id, protein value, fat value, carbohydrate value)

2.5.2 ER Diagram

Figure 1: ER diagram.

4

2.6 Normal Form

All our relations are in BCNF, as, in each table, all functional dependencies are implied by the
keys:

food: fdc id → descMajor, descMinor, food category id

branded food: fdc id → brand owner, ingredients, serving size, serving size unit

food category: food category id → description

food nutrient: fdc id, nutrient id → amount

nutrient: nutrient id → name, unit name

food nutrient conversion factor: nutrient conversion id, fdc id→ nutrient conversion id, fdc id

food calorie conversion factor: nutrient conversion id→ protein value, fat value, carbohydrate value

2.7 Technology Used

• Data pre-processing: Python (pandas, numpy), R.

• Web development: “MEAN” stack (MySQL, Express, AngularJS, Node), HTML, CSS.

• Cloud technology: AWS relational database service (RDS)-MySQL

HTML
Templates

Files

Database

Web Server

Web
Application

Browser

Data

AWS RDS
MySQL

Node.js Angular

Client-SideServer-side
Static resources:
- CSS
- Javascript Images
- other files

Request data:
- URL encoding
- GET/POST data
- Cookies

HTML (or JSON data)

Express

Figure 2: Dynamic web app architecture

5

3 System Architecture

Below are the descriptions of our web pages and what each page accomplishes:

• Home
The home page provides a brief introduction to the main functionalities of this application.
We also implemented a flip-card function at the bottom of our website, where the user could
preview the food in the common food categories. The food preview is dynamically generated
by connecting to the back-end every time the home page is refreshed.

• Search Food
The search page allows users to search for their favorite food and returns the nutrition infor-
mation. We expect users to type in a generic name for the food they wish to look into, such as
eggs, yogurt. To make their searches easier and smoother, users can choose food (e.g., brown
organic eggs or Chobani blueberry Greek yogurt) from a drop-down list, and the information
regarding that food will be returned on the right-hand side of the website with a serving size
of 100 grams.

• Daily Nutrition
The daily nutrition page assists the user in calculating the total nutritional contents, namely
protein, carbohydrates, and fat, for any food items. The users first search for a specific food,
add it to a running list of food items, and type in the amount they have consumed for each
item. The total amount of macros will be calculated and displayed on the page in units of
grams.

• Recommendation
The recommendation page includes two major parts, including the recommendations of foods
made based on the users’ needs and goals and a few live Twitter feeds from food channels.
In the first part, users can specify the percentage of carbohydrate, fat, or protein they wish
to take from food, and this application will return the items that meet this criterion. The
second part contains three Twitter feeds, including two cooking channels and a Philadelphia
restaurant magazine.

4 Queries

In total, we implemented 11 queries in this project to achieve the above functionalities. To better
illustrate these queries, five of them are selected and discussed below.

• Query 1 returns all the food in the Dairy and Egg product category.

• Query 2 retrieves the major and minor descriptions of top twenty foods that contain a certain
fizzy description term entered by the user.

• Query 3 returns the name of the nutrient and its amount for a specific food.

• Query 4 computes the protein, fat, and carbohydrate values based on the food and the amount
the user inputs.

6

• Query 5 is the most complicated one used on our website. It is used to make a recommendation
of foods based on the range of either protein, fat, or carbohydrate values entered by our users.

5 Performance Evaluation

We performed query optimization on the two most complicated queries deployed on our website.

The first one calculates the amount of three nutrients (i.e., protein, fat, and carbohydrate) for a
specific food that the user provided in the Daily Nutrient page. We joined the food, nutrient, and
food-nutrient tables three times for the three nutrients and then combined the three temporary
tables together. The food nutrient table represents the many-many relationship between the food
table and the nutrient table, containing 4,800,957 rows and is approximately 75.4 MB in size. The
original query took roughly 0.05 sec because we used cross join over the three tables and did full
table scans. This was fast but not optimal, so we used inner join later and sped up the query to
around 0.01 sec. Since 0.01 sec is already fast enough, we did not use any indices or caching for
this query.

The second query we optimized is the one used in the Recommendation page. This query calculates
the percentage of the calories each nutrient (protein, fat, and carbohydrate) has in each food and
returns the ones that satisfy the users’ requirements. This one is the most complex query on
our website because it joins five tables (food, nutrient, food-nutrient, food-nutrient-conversion-
factor, and food-calorie-conversion-factor) three times to calculate the calorie. Besides the food-
nutrient and food tables, which have 4,800,957 rows and 292,060 rows, respectively, the food-
nutrient-conversion-factor table also has 10,919 rows, matching the food table with the food-calorie-
conversion-factor table. The original query took roughly 1.70 sec to return the result using the cross
join. After switching to inner join, we improved the query performance by approximately 0.14 sec.
We then experimented with different indices. Adding indices on the food-nutrient table would
speed up the running time to approximately 1.40 sec, and adding an indices on the food-nutrient-
conversion-factor table would speed up the running time to approximately 1.50 sec. This is probably
because that the food-nutrient has significantly more rows than the food-nutrient-conversion-factor.
Therefore, choosing an appropriate joining method, as well as indexing the food-nutrient table,
improved the performance.

6 Technical Challenges

The first challenge that we faced was cleaning the datasets. A significant portion of the data has
meaningless numbers in the end, which makes the data extremely difficult to read.

The second challenge is how to load the data file into a local machine efficiently. If loading the data
with MySQL Workbench, the loading time becomes exceptionally long. It will take hours to load
a single table into the database. Our final solution is modifying the configuration file for MySQL
and loading the data from the command line; then it only takes seconds to minutes to load a table.

The third challenge that we faced during the development is understanding and using the description
of the food in the food table. Many descriptions are very similar to each other and are hard to
read. In order to resolve this problem, we used Python to split the description into major and minor

7

descriptions. Major descriptions include the main food type, and the minor descriptions indicate
the slight difference between the food. By doing so, not only the presentation of data becomes
more precious, but also the results can be further used as the inputs to another query.

The fourth challenge is tuning the front-end of the website. Our application is very dynamic and
there are usually multiple Angular components in one controller. Often times, these components
are connected to each other and can take many forms such as strings or arrays. Connect these
components to the back-end was a challenge for us as well.

The last challenge is making the front-end responsive, such as making navigation bar a toggle bar
when shrinking the page, or have components be stacked vertically or horizontally depending on
the width of the web page.

7 Extra Credits

• The whole database has been migrated to the AWS cloud.

• Twitter real-time steaming data was attached at the bottom of the “Recommendation” page.

• AngularJS was used as the front-end web framework to write the web

References

[1] C. M. Hales, M. D. Carroll, C. D. Fryar, and C. L. Ogden, “Prevalence of obesity among adults
and youth: United states, 2015–2016,” 2017.

[2] A. Lang and E. S. Froelicher, “Management of overweight and obesity in adults: behavioral
intervention for long-term weight loss and maintenance,” European Journal of Cardiovascular
Nursing, vol. 5, no. 2, pp. 102–114, 2006.

8

Appendix A: Table creation DDLs

DDL 1: Food

CREATE TABLE food (
f d c i d INT NOT NULL,
d e s c r i p t i o n VARCHAR(40) ,
f o od ca t e g o r y i d INT ,
PRIMARY KEY(f d c i d) ,
FOREIGN KEY(f o od ca t e g o r y i d)
REFERENCES food ca t ego ry (f o od ca t e g o r y i d)) ;

DDL 2: Branded Food

CREATE TABLE branded food (
f d c i d INT NOT NULL,
brand owner VARCHAR(40) ,
i n g r e d i e n t s VARCHAR(40) ,
s e r v i n g s i z e DECIMAL(10 , 3) ,
s e r v i n g s i z e u n i t VARCHAR(5) ,
PRIMARY KEY(f d c i d) ,
FOREIGN KEY(f d c i d)
REFERENCES food (f d c i d)) ;

DDL 3: Food Category

CREATE TABLE food ca t ego ry (
f o od ca t e g o r y i d INT NOT NULL,
d e s c r i p t i o n VARCHAR(40) ,
PRIMARY KEY(f o od ca t e g o r y i d)) ;

DDL 4: Food Nutrient

CREATE TABLE food nu t r i e n t (
f d c i d INT NOT NULL,
nu t r i e n t i d INT NOT NULL,
amount DECIMAL(10 , 3) ,
PRIMARY KEY(fdc id , n u t r i e n t i d) ,
FOREIGN KEY(f d c i d)
REFERENCES food (f d c i d) ,
FOREIGN KEY(nu t r i e n t i d)
REFERENCES nut r i en t (nu t r i e n t i d)
) ;

CREATE TABLE food nu t r i e n t (
f d c i d INT NOT NULL,
nu t r i e n t i d INT NOT NULL,
amount DECIMAL(10 , 3) ,
PRIMARY KEY(fdc id , n u t r i e n t i d) ,
FOREIGN KEY(f d c i d)
REFERENCES food (f d c i d) ,
FOREIGN KEY(nu t r i e n t i d)
REFERENCES nut r i en t (nu t r i e n t i d)
) ;

DDL 5: Nutrient

9

CREATE TABLE nut r i en t (
nu t r i e n t i d INT NOT NULL,
name VARCHAR(255) ,
unit name VARCHAR(255) ,
PRIMARY KEY(nu t r i e n t i d)
) ;

DDL 6: Food Nutrient Conversion Factor

CREATE TABLE f o od nu t r i e n t c o nv e r s i o n f a c t o r (
nu t r i e n t c onv e r s i o n i d INT NOT NULL,
f d c i d INT NOT NULL,
PRIMARY KEY(nu t r i e n t c onv e r s i on i d , f d c i d) ,
FOREIGN KEY(f d c i d)
REFERENCES food (f d c i d) ,
FOREIGN KEY(nu t r i e n t c onv e r s i o n i d)
REFERENCES
f o o d c a l o r i e c o n v e r s i o n f a c t o r (nu t r i e n t c onv e r s i o n i d)
) ;

DDL 7: Food Calorie Conversion Factor

CREATE TABLE f o o d c a l o r i e c o n v e r s i o n f a c t o r (
nu t r i e n t c onv e r s i o n i d INT NOT NULL,
p r o t e i n va l u e DECIMAL(10 , 3) ,
f a t v a l u e DECIMAL(10 , 3) ,
carbohydrate va lue DECIMAL(10 , 3) ,
PRIMARY KEY(nu t r i e n t c onv e r s i o n i d)
) ;

10

Appendix B: List of Queries deployed in this project

Query 1:

SELECT DISTINCT descMajor
FROM food
WHERE food ca t e g o r y i d = 1 AND LENGTH(descMajor)< 30 ;

Query 2:

SELECT DISTINCT F. descMajor , F . descMinor , F . f d c i d
FROM food F
WHERE lower (descMajor) LIKE ’%bee f%’
LIMIT 20 ;

Query 3:

SELECT FN. amount , N. name
FROM food nu t r i e n t FN JOIN food F ON FN. f d c i d = F. f d c i d
JOIN nut r i en t N ON FN. nu t r i e n t i d = N. nu t r i e n t i d
WHERE F. f d c i d = ‘ xxxxx ‘ AND N. name NOT LIKE ’%:% ’

Query 4:

WITH temp prote in AS(
SELECT F. fdc id , FN. amount∗(‘+amount+ ‘/100) AS p ro t e i n va l u e
FROM food F JOIN food nu t r i e n t FN ON F. f d c i d = FN. f d c i d
JOIN nut r i en t N ON FN. nu t r i e n t i d = N. nu t r i e n t i d
WHERE N. name = ’ p ro t e in ’ AND F. f d c i d=‘+id+‘
) ,
temp fat AS(
SELECT F. fdc id , FN. amount∗(‘+amount+ ‘/100) AS f a t v a l u e
FROM food F JOIN food nu t r i e n t FN ON F. f d c i d = FN. f d c i d
JOIN nut r i en t N ON FN. nu t r i e n t i d = N. nu t r i e n t i d
WHERE N. name = ’ carbohydrate , by d i f f e r e n c e ’ AND F. f d c i d=‘+id+‘
) ,
temp carb AS(
SELECT F. fdc id , FN. amount∗(‘+amount+ ‘/100) AS carbohydrate va lue
FROM food F JOIN food nu t r i e n t FN ON F. f d c i d = FN. f d c i d
JOIN nut r i en t N ON FN. nu t r i e n t i d = N. nu t r i e n t i d
WHERE N. name = ’ t o t a l l i p i d (f a t) ’ AND F. f d c i d=‘+id+‘
)
SELECT TP. fd c id , TP. p ro t e in va lue , TF. f a t va lu e , TC. carbohydrate va lue
FROM temp prote in TP JOIN temp fat TF ON TP. f d c i d = TF. f d c i d
JOIN temp carb TC ON TP. f d c i d = TC. f d c i d

Query 5:

WITH temp prote in AS(
SELECT F. fdc id , FN. amount ∗ CCF. p r o t e i n va l u e AS p ro t e i n va l u e
FROM food F JOIN food nu t r i e n t FN ON F. f d c i d = FN. f d c i d
JOIN nut r i en t N ON FN. nu t r i e n t i d = N. nu t r i e n t i d
JOIN f o od nu t r i e n t c o nv e r s i o n f a c t o r NCF ON F. f d c i d = NCF. f d c i d
JOIN f o o d c a l o r i e c o n v e r s i o n f a c t o r CCF ON NCF. nu t r i e n t c onv e r s i o n i d = CCF.

nu t r i e n t c onv e r s i o n i d
WHERE N. name = ’ p ro t e in ’
) ,
temp fat AS(

11

SELECT F. fdc id , FN. amount∗CCF. f a t v a l u e AS f a t v a l u e
FROM food F JOIN food nu t r i e n t FN ON F. f d c i d = FN. f d c i d
JOIN nut r i en t N ON FN. nu t r i e n t i d = N. nu t r i e n t i d
JOIN f o od nu t r i e n t c o nv e r s i o n f a c t o r NCF ON F. f d c i d = NCF. f d c i d
JOIN f o o d c a l o r i e c o n v e r s i o n f a c t o r CCF ON NCF. nu t r i e n t c onv e r s i o n i d = CCF.

nu t r i e n t c onv e r s i o n i d
WHERE N. name = ’ carbohydrate , by d i f f e r e n c e ’
) ,
temp carb AS(
SELECT F. fdc id , FN. amount∗ CCF. carbohydrate va lue AS carbohydrate va lue
FROM food F JOIN food nu t r i e n t FN ON F. f d c i d = FN. f d c i d
JOIN nut r i en t N ON FN. nu t r i e n t i d = N. nu t r i e n t i d
JOIN f o od nu t r i e n t c o nv e r s i o n f a c t o r NCF ON F. f d c i d = NCF. f d c i d
JOIN f o o d c a l o r i e c o n v e r s i o n f a c t o r CCF ON NCF. nu t r i e n t c onv e r s i o n i d = CCF.

nu t r i e n t c onv e r s i o n i d
WHERE N. name = ’ t o t a l l i p i d (f a t) ’
) ,
temp1 AS(
SELECT TP. fd c id ,
TP. p r o t e i n va l u e /(TP. p r o t e i n va l u e+TF. f a t v a l u e+TC. carbohydrate va lue) AS

pro t e in va lue ,
TF. f a t v a l u e /(TP. p r o t e i n va l u e+TF. f a t v a l u e+TC. carbohydrate va lue) AS fa t va lu e ,
TC. carbohydrate va lue /(TP. p r o t e i n va l u e+TF. f a t v a l u e+TC. carbohydrate va lue) AS

carbohydrate va lue
FROM temp prote in TP JOIN temp fat TF ON TP. f d c i d = TF. f d c i d
JOIN temp carb TC ON TP. f d c i d = TC. f d c i d
)
SELECT DISTINCT F. descMajor
FROM food F JOIN temp1 T ON F. f d c i d = T. f d c i d
WHERE T. ‘+myData name+‘ va lue >= ‘+myData min+‘ AND T. ‘+myData name+‘ va lue <= ‘+

myData max+‘
ORDER BY F. descMajor ;

12

	Introduction
	Data Source & Technologies
	Data Description
	Data Pre-processing
	Summary statistics
	Data Ingestion
	Local MySQL database
	AWS MySQL database

	Relational Schema and ER diagram
	Relational Schema
	ER Diagram

	Normal Form
	Technology Used

	System Architecture
	Queries
	Performance Evaluation
	Technical Challenges
	Extra Credits

