Team MNWD Search Engine Final Report
CIS 455/555: Internet and Web Systems

Divya Somayajula (Search Engine & UI)
Meri Kavtelishvili (Crawler)

Nimai Agarwal (PageRank)

Yixue Wendy Feng (Indexer/TF-IDF)

1. Overview

‘We built our search engine using React.js for the front-end, Spark Java for
the back-end, StormLite framework for the crawler, MapReduce job im-
plemented in Apache Storm for the indexer, Apache Spark for the PageR-
ank algorithm, and AWS S3, SQS, and DynamoDB for the database. All
features and implementation details are described in this report. The in-
structions and necessary dependencies for running this search engine are
in the README file.

2. Introduction
2.1. Project Goals and High-Level Approach

The following is a list of goals our team set out to achieve for this project,
which we believe we did accomplish, as well as the high-level approach
each of us took during the implementation of each component:

1. Crawl from diverse & credible sources to provide the best search
results possible

2. Create a search engine that is a good citizen (respects protocols of
other domains-robots.txt) and avoid malicious pages, cycles, and
traps to accumulate the best quality content

3. Provide the most useful/relevant search results in the fastest time
possible by implementing and refining a detailed ranking algorithm
that takes into account multiple factors indicative of authoritative-
ness & proximity to the query

4. Create a database schema that allows for quick queries and retrievals,
and minimizes the number of costly updates and scans by using op-
timizations such as DynamoDB’s batch writes and reads

5. Find the optimal parameters (number of threads, nodes, etc) for our
search engine, crawler, and indexer for the highest efficiency

6. Have a robust search engine that supports spell check and fuzzy
search and enrich the user’s search experience with relevant Ama-
zon shopping results

2.2. Rough Milestones & Timeline
2.2.1. WEEK OF APRIL 19TH

Crawler: Provide API, Move to DynamoDB and S3, move link queue
to database (instead of HashMap), Decide on seed links, + save edges.
Indexer: Extract word level features (frequency) from test docs, create in-
verted index, design database schema for storing term-document info.
PageRank: Create first pass of page rank algorithm in Spark.

Search Engine & UI: Create sketch/design of search form, plan out route
handlers for accessing page ranks/TF-IDFs/document info from database,
plan out how to rank documents, use React.js to create search form
Overall: Plan out database schema, Spark routes, create databases

2.2.2. WEEK OF APRIL 26TH

Crawler: Make distributed (Storm), fit into Mercator-style, actually crawl
pages + testing. +update how we deal with robots.txt.

DIVYAS22 @SEAS.UPENN.EDU
MERIKAV @ SEAS.UPENN.EDU
NIMAI@ SEAS.UPENN.EDU
WENDYFYX @ SEAS.UPENN.EDU

Indexer: Add support for storing term and document information to Dy-
namoDB; remove stopwords and add lemmatization

PageRank: Deploy PageRank on EMR cluster; read/write from DB.
Search Engine & UI: Implement all route handlers and database func-
tions, implement preliminary algorithm for combining PageRank, TF-
IDFs, etc in order to rank documents, connect search engine with
database/other components

Overall: Continue to integrate all components together

2.2.3. WEEK OF MAY 3RD

Crawler: More crawling and testing + quality checking

Indexer: Integrate with crawler to get document content from S3 buckets.
Index larger amount of documents on multiple nodes.

PageRank: More testing of ranking system and stress test with thousands
of documents and links.

Search Engine & UI: Continue to refine ranking function, improve Ul
Overall: Continue to integrate all components together

2.2.4. WEEK OF DEMO

Crawler: More crawling and testing + quality checking

Indexer: Monitor the indexing process + quality checking

PageRank: Make sure fully integrated with crawler and deployed

Search Engine & UIL: Finalize ranking function/Ul, add search results
from Web Services and support for spell check (as extra credit)

Opverall: Finish integration, deploy on EC2

3. Project Architecture

Please see the appendix for a visual overview of the project architecture.

3.1. Database Schemas

1. documents (DynamoDB)
The primary partition key of this table is docld, which is a hash
of the contents of the document. Each docld has the following
attributes: docHeader which is the title/header of the document,
excerpt which is the first few sentences of the document, highestFreq
which is the highest frequency of any one term in the document used
for normalized TF computation purposes, lastCrawledTime which
is the the time that the content at this URL was crawled, numWords
which is the total number of terms, pageRank which is the page rank
value of this document, s3Ref which is the id of the S3 object in
which the contents of the document are stored, and url. The purpose
of this table is to store metadata about every document crawled.
These doclds are used as sort keys in the inverted index in order to
keep track of the various occurrences of every term. This table is
also used by the search engine for display purposes (eg: header, url).

2. contentSeen (DynamoDB)
The primary partition key of this table is hash, which is the hashed
content of the document that it corresponds to. This table is used to

Team MNWD Search Engine Final Report

check if certain document contents (even corresponding to different
URLs) have been crawled and stored before, preventing the crawler
from going into cycles.

. documentEdges (DynamoDB)

The primary key of this table is from and the primary sort key is fo.
A row in this table corresponds to the document with id from having
an outgoing link to the document with id zo. For every href link (for
document H) in a given document D that a crawler extracts, an entry
with primary key D’s id and sort key H’s id is added to this table.
This is directly ingested by the PageRank algorithm for link analysis.

. exploredUrls (DynamoDB)

The primary partition key of this table is url and each ur/ has
an attribute called docld. This table represents the urls which
have already been crawled and their corresponding entries in the
documents table. This helps prevent the crawler from inadvertently
crawling content at the same URLs over and over again (if the URL
is embedded in many documents, for example) and this helps avoid
the crawler going in cycles.

. robotsInfo (DynamoDB)

The primary partition key of this table is wrl and each url
(where robots.txt of each domain is) has the following attributes:
lastCrawledTime which is the last time this domain was crawled,
waitTime which is the required number of seconds between
subsequent requests to this domain, and disallowedUrls which
is a list of relative links in this domain that are prohibited from
being crawled. As the crawler explores different domains, it
caches the robots.txt politeness information corresponding to that
domain in this table, so that on future crawls of the domain, this
information is easily accessible and doesn’t have to be fetched again.

. terms (DynamoDB)

The primary partition key of this table (our inverted index) is term
and the primary sort key is docld. A row in this table corresponds
to the occurrence of term in the document with id docld. Other
attributes include normalizedTf and tf for each (term, docld)
combination. We initially had only the ferm partition key, and
each term had an array of docld it appears in along with the
corresponding term frequency. However, more common terms can
exist in thousands of documents, making the item size for those
terms very large very quickly, exceeding the 400KB per item limit
in DynamoDB. We found this issue when we indexed beyond 50k
documents, and had to change the terms table schema to include
a sort key of docld. While this schema dramatically increases the
number of items in the table, DynamoDB has no table size limit.

. indexedBuckets (DynamoDB)

The primary partition key of this table is s3Ref, referring to the ID
of S3 buckets storing crawled document contents. An indexer node
downloads one S3 bucket at a time and indexes all documents in the
bucket (ranging from 50 to 1000+ documents). To prevent multiple
indexer nodes indexing documents from the same bucket, the bucket
ID, or s3Ref is saved to this table when it’s initially downloaded
by an indexer so that for each bucket the indexer encounters, it can
check if it has been accessed by another node. This table makes
it possible for multiple indexer nodes to run concurrently without
indexing the same content.

Failure Handling: Since we only store the bucket ID when it’s
initially downloaded, if the indexer is interrupted in the processing
of indexing documents in a bucket, the leftover documents will not
be indexed by another bucket because the bucket ID will already be
in this table. This could be improved by keeping track of bucket
state if indexing is finished or interrupted. However, because we
had a large number of documents crawled, and the indexer rarely
ran into issues or failures, we lost at most a couple hundreds of
documents which doesn’t affect the overall quality of the indexer.

8. searchResultsCache (DynamoDB)
The primary partition key of this table is searchQuery which is a
lowercase, stemmed, and alphabetically sorted version of the search
query. Each searchQuery has an attribute of type List of Lists called
matches, which is a sorted, ranked version of the first 150 search
results. This table was designed to provide quick access to cached
search results by having a standardized version of the query as the
primary key. Also, in order to respect the DynamoDB Item size
limits, only 150 of the results were cached, as users will most likely
only look at up to the first 15 pages.

9. document-contents (S3 Bucket)
Document contents are stored in S3 bucket. Each object in the
bucket contains on average 70mb of data, which corresponds
to about 300-400 different document contents. While crawling
the web-pages, the content is stored in Java main memory in a
hashmap. In the hashmap, the key is the document id, and the
value is the content of the corresponding document. Once enough
documents are buffered in the memory (about 60mb of data),
then the hashMap is serialized into a JSON object using gson
library, and then the serialized object is written into a file and
uploaded to S3 as a new object. This way, we can maintain a ref-
erence from each docld to its contents, and from S3 object to docIDs.

10. SQOS Crawler Queues

There are two main queues that the crawler uses. Wikipedia queue
for Wikipedia domain, and another one for every other domain. For
the Wikipedia queue, the seed url was Wikipedia portals page, and
since Wikipedia is mostly self-contained (each document mostly
links to other Wikipedia pages), the crawler that was working on
this queue ignored all the other domains. The other queue was popu-
lated using odp, dmoz, and botw web directories. Crawlers working
on this queue ignore all Wikipedia pages.

4. Implementation Details, Issues &
Difficulties, and Optimizations

4.1. Crawler

Implementation: Crawler was implemented using StormLite in Java. The
topology architecture is the following: It has a urlSpout that retrieves
urls from the database, and then forwards these urls to the filterBolt.
For each url, the filterBolt decides what to do with the url, either
emit, disregard, or put it back in the queue. In addition to this, it also
makes an edge (to be used by pageRank) and puts it in the database.
ContentFetcher bolt then gets the content of the received url, checks
if the content already is seen, and if not, sends the new content to the
linkExtractor and the docSaver. LinkExtractor extracts all the links
from the content and saves them to the SQS queue. The docSaver saves
the document with all the metadata, and also saves the document contents.

Issues & Difficulties: Initial issue was the speed of the crawler. It
would crawl less than one document in every 5-7 seconds. This meant
that we would not have 200k documents crawled in time. In addition to
this issue, we also had to monitor content quality and diversity of the
sources. No matter what seed url we started from, if one of them was
Wikipedia, Wikipedia was turning out to be the majority of the crawled
documents.

Optimizations: To fix the diversity of the resources issue, we cre-
ated two separate queues, one holding links from Wikipedia and the other
holding links from every other domain. This as well sped up the crawler
and made sure that we would have resources not only from Wikipedia.

There were several optimizations done to increase the speed of the crawler.
In the end, about 600k documents were crawled at a rate of three docu-

https://kodejava.org/category/other-libraries/google-gson/

Team MNWD Search Engine Final Report

ments per second.

1) Initially, there were only three bolts/spouts. One was for fetching urls,
other for contents, and the last one saved the docs and also extracted the
urls. Extracting the urls from the documents was taking a lot of time and
was the bottleneck. Separating work for extracting the links and saving
the documents considerably sped up the crawler.

2) To minimize the need to retrieve data from the databases, each read also
returned some extra information. (e.g asking the database if some object
with specified id exists, also returns the object if it exists). In addition
to this, some information about robots for the domain was stored in the
main memory instead of the database. Batch read/write/delete was used
to speed up the crawler. In the UrlSpout, each thread read and deleted ten
urls at a time. LinkExtractor saved ten urls to the frontier at a time instead
of saving one at a time. Number ten was chosen because it is the maxi-
mum number SQS supports for batch processing. Documents and Edges
were also buffered up in the main memory and written into the dynamoDB
database 25 at a time (25 is the highest number dynamoDB supports for
batch processing). In addition to the documents, document contents were
also buffered up in the memory in a hashmap (the way it was described
above), and then written into S3 file on average 60-70mb at a time.

3) I also experimented with the number of threads to see what worked the
best. In the end, I left 10 urlExtractors, 15 filers, 20 docFetchers, 20 sa-
vors, and 30 linkExtractors.

4) Initially, grouping strategy was group by field, based on the domain.
This worked well for the crawler that was working on many domains at
once. However, I changed this grouping strategy to shuffle grouping for
the crawler that was working on the Wikipedia pages. The reason is that
since there was only one domain, not every executor was being utilized,
and every url was going to one executor.

5) In addition to other optimizations, scaling horizontally also helped
speed up the crawler. Instead of running only one EC2 instance, we ran
2-3 instances at a time, which doubled the crawling time.

4.2. Indexer & TF-IDF Retrieval Engine

Implementation: As described above, the main indexer logic is a MapRe-
duce job implemented in Apache Storm. The job runs on a local clus-
ter, and saves inverted index (term-document pair) information to a cloud
database in DynamoDB. Each component is described below:

DocSpout reads crawled document content from S3 from FileGenerator
object, clean content (remove HTML tags using JSoup and filter docu-
ments), and save document title and excerpt to documents table in Dy-
namoDB. FileGenerator gets document content from S3, implement has-
Next() and getNextDoc() similar to Java iterators. The IDs of S3 buckets
being/already indexed are saved to indexedBuckets table to allow the in-
dexer to run from multiple nodes without indexing the same content twice.
MapBolt gets processed document content from DocSpout, and emits
term-document pairs (can support multiple executors). The document text
is processed into terms using the Stanford CoreNLP pipeline, which per-
forms tokenization. In the case that we run into large documents, we
process only the first 30k tokens in each document. We then remove stop-
words using a predefined list containing 127 stopwords from NLTK, and
filter terms that only contain letters, numbers and dash (-), and are be-
tween 2 and 25 characters. After filtering, each term is lemmatized us-
ing Porter Stemmer, and emitted with the document ID. When it finishes
emitting term-document pairs (reach the end of the document or exceed
30k tokens), it emits a EOS signal to ReduceBolt. ReduceBolt processes
each term-document pair as it comes from MapBolt and saves in a sin-
gleton Documents object. The inputs are grouped by document ID, so it
was guaranteed that all terms in each document would be processed by
the same executor. Once it receives EOS from a document, it emits the
inverted index for the current document (each unique term and its term
frequency in the current document) to TermBolt. Similar to the forward
index in the Google paper, Documents is a singleton object that keeps
track of document metadata (highest frequency of any word, and total
number of words in the document), and term (TF, first position, etc) state
before the reduce stage. After receiving EOS from a document, Reduce-

Bolt calls updateDb() to save document metadata to the documents table
and the document state is removed from memory. TermBolt receives in-
put from ReduceBolt and batch write to the terms table in DynamoDB
(can support multiple executors). Each TermBolt executor has its own
TermDocInvIndex object, which is a temporary object for storing the in-
verted index in memory before batch writing to DB.

Issues & Difficulties: One of the biggest challenges is that DocSpout
emits documents too fast for the subsequent bolts to process and save to
DB. Unlike StormLite, we can’t put a limit on how big the task queue
is, and if the spout emits content faster than bolts will process then, it’s
guaranteed to explode and run out of memory at some point, especially
if we have to index a large amount of documents. To deal with this,
we first limit the spout to only have one executor, and have the spout
sleep for some time (1 sec) after emitting each document. However the
time it should sleep takes a bit of time to tune for different machines
or nodes, and time for sending request/receiving response to DB is
also unpredictable. To deal with this, we added the TermDocInvIindex
object, so that each TermBolt executor can save a couple thousands
term-document pairs in memory before it flushes them and writes to DB.
In addition, we created a singleton UpdateState object to keep track
of how many TermBolt executors is currently writing to DB. DocSpout
polls for the state through this object, and if at least one TermBolt
executor is updating DB, it stops emitting new documents. One limitation
is that if any TermBolt executor is writing to DB, the whole process
stops. However, batch write in DynamoDB is fairly fast, and with only 4
TermBolt executors, this was not a huge bottleneck in indexer speed.
Another challenge is having the indexer run on multiple instances (local
+ EC2) and being able to index large amounts of documents. Luckily,
once a single indexer pipeline is set up and writing to a remote cloud
DB service such as DynamoDB, the only thing left to make concurrency
happen was controlling the input of DocSpout. We implemented
FileGenerator to read from S3 buckets and output one document at a
time with functions hasNext() and getNextDoc() similar to a Java iterator.
While these two functions emit documents, we added extra logic to
deal with retrieving new buckets when all documents from the current
bucket are emitted, downloading/parsing an S3 bucket into documents,
checking if a bucket has already been indexed, etc. When running the
indexer, we specify how many buckets we should process and index
using maxBuckets in FileGenerator, instead of the max number of
documents, and once exceeded, the program can terminate. The main
indexer program polls for the FileGenerator state to check if it should
terminate. Upon termination, the main indexer program sends signals for
all TermBolt executors to flush term-document pairs in memory to DB,
shutdown all DynamoDB and S3 clients, and shutdown the local cluster.

Optimizations: The major bottleneck for the indexer is writing large
amounts of term-document pairs to DynamoDB. After updating the
terms table schema to use document ID as sort key, we were able to
utilize batch write to speed up the indexer instead of performing only
update operations. We increased the number of executors for MapBolt,
ReduceBolt and TermBolt all to 4, and ran the indexer on two EC2
instances in addition to the local instance. Since the EC2 instance had
more memory, we increased the number of entries that TermBolt could
keep in memory before writing to DB to reduce the time the topology
remained idle (when DocSpout is not emitting new documents).

4.3. PageRank

Implementation: The page rank algorithm was implemented in Spark in
Java and runs on an EMR cluster. The algorithm followed the specifica-
tions given in class, with ranks propagated along edges at each iteration
and aggregated with a decay factor of 0.15 and running for at most 25
iterations or until convergence. After the page ranks are all computed,
each value was written to the documents table.

Issues & Difficulties: There were bugs with the EMR DynamoDB
connector which I used to load our DynamoDB edge graph into a Spark

Team MNWD Search Engine Final Report

RDD. I ended up having to scrap the plugin and simply dump the dynamo
table to an S3 file, and load that in and parse it in Spark manually. This
approach ended up fixing some frustrating bugs. There were also many
issues with deploying the Spark job to EMR. At times, the Spark job
would randomly terminate without errors, even though it would run to
completion locally. I had to simplify some of the logic to make it work.

Optimizations: Spark allowed the computation to run faster due to
the parallelism. Because of the massive size of the dataset (the edge graph
had far over a million edges) it was necessary to distribute using Spark
and EMR or the computations would have taken too long. I was careful
to write the Spark operations so they would run efficiently.

4.4. Search Engine and User Interface

Implementation: The search engine and UI consist of a React.js client-
side application and a server built on the Spark Java framework. The
React.js application maintains a few States such as page and results, so
a change in any one of these will refresh and re-render the page. The
interface consists of a text box where users can input their search queries
and then click the Search button. Upon this, the function onSearchHan-
dler() is called and a request is made to the route on the server side called
/getDocuments with the parameters of the search query and default page
number of 0. How this route works will be described later on, but once
the client-side receives the String response, the Javascript JSON parser is
used to create an array of objects, each of which represents a search result,
and the state results is set to this, so the page is re-rendered, and the user
can view their search results. If the user wishes to see the previous 10 or
next 10 results for their query, the handlers prevPage() and nextPage() are
called, respectively, and they work just like onSearchHandler() does.

The bulk of the search engine operation happens on the server side.
The Route DocumentRetrieval, corresponding to /getDocuments, contains
a handle() function which first parses out the query and page parameters
from the Request object. Each query is split into a list of multiple terms.
In order to stay consistent with the indexer, each term is made lowercase
and stemmed according to the Porter Stemmer algorithm and all stop
words are filtered out. Then, the terms are sorted in alphabetical order
and concatenated into a string, and then the searchResultsCache table is
checked. If the result R from the cache is not empty, this means this query
has been made before and we can simply return those cached results to
the user. R is indexed into depending on the requested page number and
that segment of 10 results is translated into a JSON-translatable string and
returned. Otherwise, for each query word, a hit list (list of document ids
in which this term occurs) and the corresponding normalized TF scores
are retrieved from the database, and the IDF scores are computed based
on this. Then, the intersection of all hit lists for all terms is found and this
is the set of candidate documents that need to be ranked. Additionally,
the query weight score (TF * IDF) for each term is found. Then, an
ExecutorService thread pool with 20 threads is created, the candidate
documents list is split into segments, and each segment is passed off to
each thread. The Java Callable task submitted to each of these threads
is an instance of ScoreCalculator. In ScoreCalculator, if the segment of
documents passed in exceeds the limit of 1500, only the first 1500 will
be taken for processing and score computation. Then, a set of BatchRead
requests (for every document) each of size 100 are created and made
to DynamoDB, and upon receiving these, the thread will extract the
page ranks and store them in an in-memory hash map. Then, for each
document, its cosine similarity with the query vector is calculated by
summing up the products of query term weight, normalized TF, and IDF
for each term. Then, a weighted average of this cosine similarity score
and the page rank for the document is computed and added to a list. Once
all scores have been computed for all assigned documents, the thread
returns this list. Back to the main handler in DocumentRetrieval, a custom
Comparator is used to aggregate the results from each thread together and
sort in descending order. The first 150 are inserted into the cache table,
and then based on the requested page number, these results are indexed
into and converted to a JSON-translatable string and returned.

Issues & Difficulties: Initially, the search engine used just a single
thread to retrieve all the data for each candidate document and perform all
the score computations. However, as the number of documents indexed
grew larger and more “general” queries were inputted by the user, the
performance of this single-threaded engine significantly slowed down as
it had to handle a much larger set of documents, and this in turn worsened
the user experience. So, a multi-threaded approach was taken and a thread
pool was created, where each thread was responsible for computations
for a certain subset of the documents. This noticeably helped the search
times as many of the computation heavy operations were happening in
parallel. One challenge to this was finding the optimal number of threads
in order to achieve the balance between full parallelism and thrashing
with diminishing returns. The thread pool started out with 5 threads
and was incremented up till 20, however it was found that a thread pool
greater than 20 did not help with performance at all. Another issue that
was encountered, even with multiple threads, was that each thread was
responsible for processing too many documents. In the Google paper, it
was mentioned that in order to put a limit on response time, only a certain
number of documents, specifically 40,000, of the total set of candidate
documents were even considered. This optimization was emulated in our
search engine, and a cap of 1500 documents was established for each
thread, for a total limit of 1500%20 = 30,000. Now, going back to the
cosine similarity mentioned above, the traditional formula for this is as
follows:

t)
Dim1 Wit Wig

t t
\/Zi:l wiz,j : \/Zi:l wi2,q

However it is clear that the calculation of the normalization factor in
the denominator is extremely expensive as it requires a full scan of the
inverted index for every document in question. In this paper, multiple
approximations to this formula were presented, and Method 3 was
chosen: sim(dj,q) = cos = S°t_,w;; - w;q. Dropping the
normalization factor was found to result in the fastest query times with
not much sacrifice of quality rankings for our search engine. The last
difficulty is regarding the set of candidate documents. Originally this
search engine simply used the union of hit lists, resulting in a much larger
set of potential documents, many of which matched on only one or two of
the query terms, having no significance in relation to the full query. So,
like said above, the infersection of hit lists of each term was used to be the
candidate document list, and this provided a much richer set of relevant
documents and did not result in too few matches, as initially expected.

sim(dj,q) = cosf =

More Optimizations: Stop words don’t have any critical meaning to
the query and simply increase the number of documents that need to be
handled and sorted, significantly slowing down search times, therefore
stop words were filtered out before any processing was done to minimize
such extraneous calculations. Finally, keeping in mind scalability and
the potential for this system to be used by multiple, concurrent users, a
search cache table was created in DynamoDB. As shown in the evaluation
section below, this significantly speeds up future queries by avoiding
performing the same computations and sorting all over again. Given
that users most likely search up many of the same popular queries (for
example, the president of the United States), it is important to take
advantage of the first time this heavy lifting is done for any particular
query and store it for the future.

4.5. Extra Credit Features
4.5.1. AMAZON SHOPPING SEARCH RESULTS

Rainforest, a real-time product data API, is used in order to retrieve shop-
ping search results from Amazon for every query inputted by the user.
Specifically, to the “/request” path, the API key and search term are passed
in. The JSON response is parsed and the top 12 results, along with their
titles, urls, images, and prices, are retrieved and then displayed to the user
in the right-hand panel of the interface.

http://www.cs.ust.hk/faculty/dlee/Papers/ir/ieee-sw-rank.pdf
https://www.rainforestapi.com/

Team MNWD Search Engine Final Report

4.5.2. GOOGLE-STYLE SPELL CHECKER

If the results for a search query are low (less than 10), the spell checker
route is invoked. The spell checker computes the Levenshtein distance
between the source word and words in our corpus of valid English words
until it finds the closest match. The corpus is a Google corpus of 10,000
most frequently used words in the English language, available here. Some
of the words in that corpus are nonsensical unfortunately which can rarely
cause the spellchecker to return an invalid result. However, in general
the spellchecker returns accurate results and has an advantage of sorting
its corpus by frequency of use, letting me return the most common (most
frequently used) matching English word.

5. Evaluation

5.1. Crawler

Threads vs sec/doc

2 10 25 30 35 50 100 150 250 500
threads threads threads threads threads threads threads threads threads threads

On average, we ran three separate EC2 nodes for the crawler. Which
approximately tripled the crawler speed. In the end, we crawled 600k
documents at a rate of 2-3 documents/second.

5.2. Indexer

We ran 2 EC2 instances for the indexer, each indexed ~1 docu-
ment/second (note that the spout sleeps for 1 sec after emitting each docu-
ment to prevent the storm queue from filling up too quickly, see the previ-
ous section for detailed explanation). Running two instances for 14 hours
a day, it was able to index 100k documents per day. We indexed around
200k documents total. In each indexer instance, there’s one document
spout (DocSpout) executor, and 4 executors for each subsequent bolts. We
found that increasing the number of bolt executors didn’t not significantly
boost indexer speed, but increased memory load.

5.3. Search Engine

5.3.1. CACHE PERFORMANCE EVALUATION

Cache Performance Evaluation

W Initial Query [l Same Query (from cache)
20 15.84
15
10

9.07|
5 0.31 0.2z 0.32 0 17 029
0

“philadelphia “harvard "new york city” “joe biden” "summer
subway" university" recipes”

Response Time (s)

Query

This analysis of speedups due to the cache is modeled after the 5.3 Search
Performance section in the Google paper found here.

5.3.2. QUERY LENGTH SEARCH TIME EVALUATION

Query Length Search Time Evaluation
20

E
@«
E
E
o
2
]
&
|4
"hollywood" (1) "harvard "mothers day "president "best
university” (2) qgifts” (3) united states restaurants city
america” (4) chicago illinois’
(5)
Query Length

Intuitively, longer queries match on a larger set of candidate documents,
which subsequently increases the load on each thread (for a fixed number
of threads) increasing the overall latency of the system and its response
time to the user.

6. Conclusions

In this project, we successfully designed and developed a distributed Web
indexer & crawler, as well as performed link analysis using the PageRank
algorithm. All three of these components were used as the basis of a
Google-style search engine, which allows users to input queries and view
ranked & relevant results in a matter of seconds. Building this system
taught us a great deal about scalability and efficiency, as well as how to
create a robust solution that can handle the complex, and often messy,
structure of the Web. Additionally, this project certainly emphasized
the importance of defining clear and consistent interfaces between each
component, such as database schemas, before implementation begins as
this avoids many integration issues later on.

For the future, there are definitely more enhancements we would
like to make to our search engine system to improve its performance and
output even higher quality results. One such improvement is instead of
indexing only single terms, our indexer could also index phrases of 2-3
adjacent terms. For example, if a query was “new york city”, storing
document matches in the inverted index which contain these three terms
contiguously, rather than separately, would provide more relevant search
results since this would filter out documents that simply contain each of
the individual terms separately and have very little semantic proximity
to the query. Another enhancement would be to integrate factors like
font, capitalization, positions, types of text (anchor, title), etc into the
ranking function, like mentioned in the Google paper. Instead of simply
treating every term’s contribution to a given document’s context meaning
equally, the search results would be significantly enriched if there were
some metrics to measure this by. For example, terms that are in bolded
font and towards the beginning of a document are most likely a better
indicator of a document’s semantics rather than small text at the bottom
of a document. Finally, the user experience with this search engine could
be improved by having some sort of a feedback system where users judge
how good or bad search results are for a particular query. This feedback
could be stored and then used to re-rank the same results in the future. So,
instead of relying on solely fixed features of documents and their terms,
having a subjective aspect of user opinions incorporated into the ranking
functionality could further improve this system.

7. Acknowledgements

‘We would like to thank Professor Zachary Ives, as well as the teaching as-
sistants, for all of their guidance and instruction throughout this semester.

https://github.com/first20hours/google-10000-english
http://infolab.stanford.edu/~backrub/google.html

Team MNWD Search Engine Final Report

8. Appendix

The code repository for this project can be found here.

A_F D“;cmﬂ"
/ Crawled
sy

query: [term1, term2,
..termn]

T
Aggregate TFIDF score for each word &
page rank for each document

— {doc1, length, pageRank, p T
. e o —
- ; Documents — doc2, length, pageRank.} -
1 s]
; / F ache
1 (DynamoDB)
term, docld ' = o
| L {term1, doc1, TF,
; term1, doc2, TF, o
| Terms term2, doc1, TF} {doc1, score
Store document : (DynamoDB)) doc2, score}
metadata when .
receive EOS for T [
docld from MapBolt e sort, gettop N
e N Emit TF when N
\ ReduceBolt Result Page
ReduceBolt — receive
\ EOS for docld
N from MapBalt
Figure 1. Project Architecture Diagram
Q harvard university
Harvard University - Wikipedia fuzlen en
itps:fenwikipediaorg:443wikiHarvard_University
Harvard University From Wikipedia, the free encyclopedia Jump to navigation Jump to search Private research university in Ivysport Shart Slaeve T-Shirt. Ivysport Adult T-Shirt, Short-. Ivysport Hooded Sweatshirt,
Cambrdge, Massachusets, United States Harvard recirects her, For other us .
Harvard Business Review - Wikipedia Price: $19.95 Price: $19.95 Price: $39.95
itpsien ikipediaorg:443ikHarvard_Business_Review ysport Crewneck Sweatshir. | Harvard University Christmas... || Iysport Short Sleeve T-Shit..
Harvard Business Reviw From Wikipala, the ree encyclopecia Jump t navgation Jump to search Management magazine
published by Harvard Business Publishing This article needs additional citations for D A
Shop this here! hop this here! Shop this heret
Harvard Crimson football - Wikipedia Price: $39.95 Price: $18.98 Price: $19.95
vysport Cotton Long Sieove ysport Atletcs Logo T-Shi eysport Cotton Long Sleeve

hitps:/jenwikipedia.org:443/wikifHarvard_Crimson_football
Harvard Crimson football From Wikipedia, the free encyclopedia Jump to navigation Jump to search Football team of

Harvard University Harvard Crimson footballFirst season 1873 Head coach Tim Murphy 25 Shop this here! Shop this here! Shop this here!

Price: $16.76 Price: $18.95 Price: $23.95
President of Harvard University - Wikipedia

Explore Harvard: The Yard an. 3 Flag and Yar.
https: fenwikipedia. org:443/wikifPresident_of_Harvard_University
President of Harvard University From Wikipedia, the free encyclopedia Jump to navigation Jump to search Head of Harvard passann

University President of Harvard University Seal of the President of Harvard Univ Shop this here! Shop this here:

Shop this here!

=

Price: $39.95 Price: $44.95 Price: $15.95

Harvard Ukrainian Research Institute - Wikipedia

Figure 2. Screenshot of Search Engine in Action

https://github.com/divyasom/cis555-final-project-mnwd.git

